我們擁有什麼?#
- 測試網創世 https://github.com/Uniswap/unichain-node/raw/main/chainconfig/sepolia/genesis-l2.json
- 一個可用的 L2 RPC https://mainnet-readonly.unichain.org
- 區塊探索器 https://unichain.blockscout.com
我們想要達成什麼?#
一個可用的 unichain RPC 節點,在本文中,我們只專注於如何猜測正確的 genesis-l2.json 文件,使得區塊 0 具有正確的區塊哈希 =0x3425162ddf41a0a1f0106d67b71828c9a9577e6ddeb94e4f33d2cde1fdc3befe
步驟#
1. 修正區塊數據#
首先,讓我們獲取區塊並檢查差異
下載測試網創世,命名為 genesis-l2.json.bak
import os
os.environ["RPC"] = "https://mainnet-readonly.unichain.org"
from simplebase import *
b=eth_getBlockByNumber(RPC, 0, True)
g=json.load(open("genesis-l2.json.bak"))
>>> pprint({i:j for i,j in b.items() if i in g and b[i]!=g[i]})
{'nonce': '0x0000000000000000', 'timestamp': '0x67291fc7'}
修正上述兩個差異,並注意 config.chainId
也應更改為 130(主網 chainId)。
2. 修正已知合約代碼和數據#
現在讓我們修正 alloc
,觀察 alloc 結構:
"420000000000000000000000000000000000002f": {
"code": "0x60806040526004...",
"storage": {
"0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103": "0x0000000000000000000000004200000000000000000000000000000000000018"
},
"balance": "0x0"
},
關鍵是合約地址不帶 0x 前綴,值包含代碼、存儲字典、餘額和隨機數。
我猜餘額和隨機數不會不同,因此查詢存儲和代碼,找到不匹配的並替換:
import os
os.environ["RPC"] = "https://mainnet-readonly.unichain.org"
from simplebase import *
def cached_simple_rpccall(rpc, method, params, cacheprefix=""):
cachekey = hashlib.sha256(f"{rpc}_{method}_{json.dumps(params)}".encode()).hexdigest()
cachefile = f"__pycache__/cached_simple_rpccall{cacheprefix}_{cachekey}"
if os.path.isfile(cachefile):
return json.load(open(cachefile))
res = simple_rpccall(rpc, method, params)
open(cachefile, "w").write(json.dumps(res))
return res
if 1:
g = json.load(open("genesis-l2.json.bak"))
known = set()
for addr,v in g["alloc"].items():
addr = "0x"+addr
cache = "-".join([v[i] for i in sorted(v.keys()) if i!="storage"])
if "storage" in v:
cache += json.dumps(v["storage"])
if cache in known:
continue
known.add(cache)
#print(v.keys()) code,balance,storage,nonce
if "code" in v:
#realcode = eth_getCode(RPC, addr)
realcode = cached_simple_rpccall(RPC, "eth_getCode", [addr, "0x0"])
if v["code"]==realcode:
print("ok code", addr)
else:
print("ERROR code:", addr, len(v["code"]), "=>", len(realcode))
g["alloc"][addr[2:]]["code"] = realcode
if cache in known:
known.remove(cache)
if "storage" in v:
for s_slot, s_value in v["storage"].items():
#realvalue = eth_getStorageAt(RPC, addr, s_slot, height=0)
realvalue = int(cached_simple_rpccall(RPC, "eth_getStorageAt", [addr, s_slot, "0x0"]), 16)
if realvalue==int(s_value, 16):
print("ok storage", addr, s_slot)
else:
print("ERROR storage:", addr, s_slot, int(s_value, 16), "=>", realvalue)
g["alloc"][addr[2:]]["storage"][s_slot] = "%064x"%(realvalue)
if cache in known:
known.remove(cache)
print(len(known))
open("genesis-l2.json", "w").write(json.dumps(g))
由於測試網和主網都使用 opstack,大多數合約應具有相同的地址、代碼和存儲。因此我們採用緩存機制,如果許多合約在測試網創世中具有完全相同的值,它們在主網中也可能具有相同的值。
3. 找到缺失的合約#
在運行上述代碼後,我們發現兩個合約出現在測試網中,但主網沒有代碼或存儲,因此這 2 個鍵應該被刪除:
- 0x5c69bee701ef814a2b6a3edd4b1652cb9cc5aa6f
- 0x1f98431c8ad98523631ae4a59f267346ea31f984
搜索這些地址顯示它們分別是 UniV2Factory 和 UniV3Factory。
查看探索器驗證合約頁面( https://unichain.blockscout.com/verified-contracts ),我們發現一個具有唯一合約地址的 UniV2Factory 合約:https://unichain.blockscout.com/address/0x1F98400000000000000000000000000000000002?tab=contract
因此,我們受到啟發去檢查相鄰合約地址,發現這些合約也已預先部署:
0x1F98400000000000000000000000000000000002
0x1F98400000000000000000000000000000000003
0x1F98400000000000000000000000000000000004
後兩者尚未驗證,但從發出的事件中,我們可以猜測它們是 UniV3 和 UniV4 合約,因此讓我們將這 3 個地址添加到我們的 genesis-l2.json.bak 中。
存儲槽號可以通過合約源代碼分析、主網部署的調試跟蹤,或簡單地通過 eth_getStorageAt 調用槽 0~10 來猜測。
"1f98400000000000000000000000000000000002": {
"code": "0x",
"storage": {
"0x0000000000000000000000000000000000000000000000000000000000000001": "0x0000000000000000000000009b64f6e1d60032f5515bd167346cfcd2162ee73a"
},
"balance": "0x0"
},
"1f98400000000000000000000000000000000003": {
"code": "0x",
"storage": {
"0x0000000000000000000000000000000000000000000000000000000000000003": "0x0000000000000000000000009b64f6e1d60032f5515bd167346cfcd2162ee73a",
"0x083fc81be30b6287dea23aa60f8ffaf268f507cdeac82ed9644e506b59c54ff0": "0x0000000000000000000000000000000000000000000000000000000000000001",
"0x72dffa9b822156d9cf4b0090fa0b656bcb9cc2b2c60eb6acfc20a34f54b31743": "0x000000000000000000000000000000000000000000000000000000000000003c",
"0x8cc740d51daa94ff54f33bd779c2d20149f524c340519b49181be5a08615f829": "0x00000000000000000000000000000000000000000000000000000000000000c8",
"0xfb8cf1d12598d1a039dd1d106665851a96aadf67d0d9ed76fceea282119208b7": "0x000000000000000000000000000000000000000000000000000000000000000a"
},
"balance": "0x0"
},
"1f98400000000000000000000000000000000004": {
"code": "0x",
"storage": {
"0x0000000000000000000000000000000000000000000000000000000000000000": "0x0000000000000000000000009b64f6e1d60032f5515bd167346cfcd2162ee73a"
},
"balance": "0x0"
},
詳細的值並不重要,上述代碼將從 RPC 獲取它們並替換為正確的值。
在這些步驟之後,我們仍然獲得錯誤的區塊哈希。
4. eth_getProof 確認存儲正確性#
我們如何知道創世區塊的更多細節?debug_traceBlock
RPC 方法確實支持創世區塊。
檢查所有可用的 RPC 方法,我們可以找到這個 eth_getProof,它可以輸出 accountProof、餘額、codeHash、隨機數、storageHash 和 storageProof。
通過迭代所有已知地址調用 eth_getProof,我們可以發現所有已知地址具有正確的餘額、codeHash、隨機數、storageHash,但錯誤的 accountProof,這意味著仍然有合約缺失。
5. 繼續搜索缺失的合約#
檢查 blockscout 提供的所有 API,我們可以找到這個 獲取合約列表,它可以返回所有合約地址:
https://unichain.blockscout.com/api?module=contract&action=listcontracts&offset=10000
通過調用 eth_getCode 使用 0 區塊號過濾此輸出,我們找到 4 個缺失的地址:
- 0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30001
- 0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30002
- 0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30003
- 0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30004
使用簡單的 eth_getStorageAt 查找前 200 個槽,我們成功找到前三個的正確存儲值,但最後一個仍然錯誤,即使它的前 200 個槽都是零。
g = json.load(open("api?module=contract&action=listcontracts&offset=10000"))
for addr in ["0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30001", "0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30002", "0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30003", "0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30004"]:
if not addr.startswith("0x"):
addr = "0x"+addr
addr = addr.lower()
truth = cached_simple_rpccall(RPC, "eth_getProof", [addr, [], "0x0"])
our = cached_simple_rpccall(OUR_PRC, "eth_getProof", [addr, [], "0x0"], cacheprefix="test2")
#[i==our['accountProof'][idx] for idx,i in enumerate(truth['accountProof'])]
#if not all([truth['balance']==our['balance'], truth['codeHash']==our['codeHash'], truth['nonce']==our['nonce'], truth['storageHash']==our['storageHash']]):
if 1:
print(truth['balance'], truth['codeHash'], truth["nonce"], truth["storageHash"])
print(addr, truth['balance']==our['balance'], truth['codeHash']==our['codeHash'], truth['nonce']==our['nonce'], truth['storageHash']==our['storageHash'], )
現在我們使用 eth_getProof 指定槽,發現這個合約確實有存儲,因為空合約不會返回 storageProof。
6. 逆向工程合約#
使用 dedaub 反編譯 0x4300c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30004
,並手動格式化:
// 由 library.dedaub.com 反編譯
// 2024.11.17 14:07 UTC
// 使用 solidity 編譯器版本 0.8.26 編譯
// 根據存儲指令的使用推斷的數據結構和變量
uint256 _receive; // STORAGE[0x0]
mapping (address => uint256) storage1; // STORAGE[0x1]
mapping (address => uint256) _earnedFees; // STORAGE[0x2]
mapping (address => struct_313) _balanceOf; // STORAGE[0x3]
struct struct_313 { address addr; uint256 amount; };
// 事件
Withdrawn(address, address, uint256);
function 0x396cb597(address varg0) public nonPayable {
require(msg.data.length - 4 >= 32);
return _balanceOf[varg0].addr;
}
function balanceOf(address account) public nonPayable {
require(msg.data.length - 4 >= 32);
return _balanceOf[account].amount;
}
function 0xc13886a4(address varg0, address varg1) public nonPayable {
require(_balanceOf[varg0].addr == msg.sender, Unauthorized());
_balanceOf[varg0].addr = varg1;
emit 0xf0476b1621059e9b7a94b31f4699ab07974f87c8e31db4cb9ad1f9892eb9b169(varg0, _balanceOf[varg0].addr, varg1);
}
function 0xc6743555(address contract1, address contract2, address owner2, uint256 amt) public nonPayable {
require(!_balanceOf[contract2].addr);
_balanceOf[contract2].addr = owner2;
_balanceOf[contract2].amount = 0;
emit 0xf0476b1621059e9b7a94b31f4699ab07974f87c8e31db4cb9ad1f9892eb9b169(contract2, 0, owner2);
0x6de(amt, contract2, contract1);
//require(msg.sender == _balanceOf[contract1].addr, Unauthorized());
}
function recipients(address varg0) public nonPayable {
return _balanceOf[varg0].addr, _balanceOf[varg0].amount;
}
function earnedFees(address addr) public nonPayable {
return _earnedFees[addr] + (_balanceOf[addr].amount * (_receive - storage1[addr])) /1e30;
}
function receive() public payable {
_receive += msg.value * 1e26;
}
function 0x6de(uint256 varg0, uint256 varg1, uint256 varg2) private {
require(msg.sender == _balanceOf[address(varg2)].addr, Unauthorized());
require(address(varg1));
require(0 - varg0);
require(_balanceOf[address(varg2)].amount >= varg0, InsufficientAllocation());
updateState(varg2);
updateState(varg1);
v0 = _SafeSub(_balanceOf[address(varg2)].amount, varg0);
_balanceOf[address(varg2)].amount = v0;
v1 = _SafeAdd(_balanceOf[address(varg1)].amount, varg0);
_balanceOf[address(varg1)].amount = v1;
emit 0x4c6e7131fb69f3c2cc88b05b76a7aa4809429fefa284dda9cf14884d25e3742b(msg.sender, address(varg2), address(varg1), varg0);
return ;
}
function updateState(addr) private {
_earnedFees[addr] += (_receive - storage1[addr])* _balanceOf[addr].amount /1e30 ;
storage1[addr] = _receive;
}
function 0x976(address varg0) private {
v0 = _SafeSub(_receive, storage1[varg0]);
v1 = _SafeMul(_balanceOf[varg0].amount, v0);
v2 = _SafeDiv(v1, 10 ** 30);
return v2;
}
function transferAllocation(address varg0, address varg1, uint256 amt) public nonPayable {
require(_balanceOf[varg1].addr);
//0x6de(uint256 varg0, uint256 varg1, uint256 varg2) 0x6de(varg2, varg1, varg0);
require(msg.sender == _balanceOf[varg0].addr, Unauthorized());
require(_balanceOf[varg0].amount >= amt, InsufficientAllocation());
updateState(varg0);
updateState(varg1);
_balanceOf[varg0].amount -= amt;
_balanceOf[address(varg1)].amount += amt;
emit 0x4c6e7131fb69f3c2cc88b05b76a7aa4809429fefa284dda9cf14884d25e3742b(msg.sender, varg0, address(varg1), amt);
}
function withdrawFees(address account_) public nonPayable {
updateState(msg.sender);
if (_earnedFees[msg.sender]) {
_earnedFees[msg.sender] = 0;
v0, /* uint256 */ v1 = account_.call().value(_earnedFees[msg.sender]).gas(msg.gas);
require(v0, WithdrawalFailed());
}
emit Withdrawn(msg.sender, account_, _earnedFees[msg.sender]);
return _earnedFees[msg.sender];
}
// 注意:原始 solidity 代碼中未包含函數選擇器。
// 但是,為了完整性,我們顯示它。
function __function_selector__() private {
MEM[64] = 128;
if (msg.data.length < 4) {
require(!msg.data.length);
receive();
} else if (0xc13886a4 > msg.data[0] >> 224) {
if (0x24e2c06 == msg.data[0] >> 224) {
transferAllocation(address,address,uint256);
} else if (0x164e68de == msg.data[0] >> 224) {
withdrawFees(address);
} else if (0x396cb597 == msg.data[0] >> 224) {
0x396cb597();
} else {
require(0x70a08231 == msg.data[0] >> 224);
balanceOf(address);
}
} else if (0xc13886a4 == msg.data[0] >> 224) {
0xc13886a4();
} else if (0xc6743555 == msg.data[0] >> 224) {
0xc6743555();
} else if (0xeb820312 == msg.data[0] >> 224) {
recipients(address);
} else {
require(0xfeb7219d == msg.data[0] >> 224);
earnedFees(address);
}
}
我們可以猜測其功能是收入分配,存在合約地址 => 擁有者地址的映射,擁有者可以轉移權重,總權重為 10000。
6. 猜測槽#
storageProof 是一個梅克爾樹,每個葉子節點是 sha3 (槽) 和 rlp 編碼的值,前綴由上述分支節點引用。因此,我們可以使用 eth_getProof 查詢一些前綴以獲取完整樹。證明的第一項總是根,解碼後我們可以發現它在 16 個可能的子項中有 4 個。例如,通過查詢槽 2 的 storageProof,我們可以獲得子前綴 4 的證明,因為 sha3(toarg(2))=405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace
。
let {toBytes,bytesToHex}=require("@ethereumjs/util")
const { utils } = require('ethers');
decodeNode=require("@ethereumjs/trie").decodeNode
nibblesToBytes=require("@ethereumjs/trie").nibblesToBytes
> decodeNode(toBytes("0xf891808080a0464322c988da3ad6becee03210d007812970a011da4ce89d63d7a8c7c46dd349a047213c020d0419fb3c2273dcddab7cb42ad2614cfd1042c358b5219d4d66d472808080a0937ec93a69abccbf4d7348457eb2e55ed59b568bc212aeb125abf3aee59cc897808080a0aa4ecc3c019aa37691f5cb2cf11822f456ce443b292d228219f1fb29502d104f80808080"))
BranchNode {
_branches: [
Uint8Array(0) [],
Uint8Array(0) [],
Uint8Array(0) [],
3 Uint8Array(32) [ 0x464322c988da3ad6becee03210d007812970a011da4ce89d63d7a8c7c46dd349 => v="0xf7a030efa3127a31b746c4ade29f2dc3d63d735226f92c8b5c62f93844e730e5387595943fcbacd76037534d2aaeb9a17f4e631dd64fbe31"
key = 0x30efa3127a31b746c4ade29f2dc3d63d735226f92c8b5c62f93844e730e53875
value="0x3fcbacd76037534d2aaeb9a17f4e631dd64fbe31"
70, 67, 34, 201, 136, 218, 58, 214,
190, 206, 224, 50, 16, 208, 7, 129,
41, 112, 160, 17, 218, 76, 232, 157,
99, 215, 168, 199, 196, 109, 211, 73
],
4 Uint8Array(32) [ 0x47213c020d0419fb3c2273dcddab7cb42ad2614cfd1042c358b5219d4d66d472 => v="0xe5a03d2849548fa0011234fd0669e617f5df1374a0d525b71bedec3d14dd02bf7f9b83821db0"
key = 0x4d2849548fa0011234fd0669e617f5df1374a0d525b71bedec3d14dd02bf7f9b bytesToHex(nibblestoBytes([4].concat(decodeNode(toBytes(v)).key())))
value = 7600 utils.decodeRlp(bytesToHex(decodeNode(toBytes(v)).value()))
71, 33, 60, 2, 13, 4, 25, 251,
60, 34, 115, 220, 221, 171, 124, 180,
42, 210, 97, 76, 253, 16, 66, 195,
88, 181, 33, 157, 77, 102, 212, 114
],
Uint8Array(0) [],
Uint8Array(0) [],
Uint8Array(0) [],
8 Uint8Array(32) [ 0x937ec93a69abccbf4d7348457eb2e55ed59b568bc212aeb125abf3aee59cc897 => 0xf7a0328a4924e9ba234119f26396d33bbebdcb65d7af957d59f814558268b1c8e69a9594ae85bbb6c1c1807a64a88f1a1f978740c8a0dba0
Node key=0x828a4924e9ba234119f26396d33bbebdcb65d7af957d59f814558268b1c8e69a [8, 2, 8, 10, 4, 9, 2, 4, 14, 9, 11, 10, 2,3, 4, 1, 1, 9, 15, 2, 6, 3, 9, 6, 13,3, 3, 11, 11, 14, 11, 13, 12, 11, 6, 5, 13,7, 10, 15, 9, 5, 7, 13, 5, 9, 15, 8, 1,4, 5, 5, 8, 2, 6, 8, 11, 1, 12, 8, 14,6, 9, 10],
key = sha3(sha3(toarg(0x3fcbacd76037534d2aaeb9a17f4e631dd64fbe31)+toarg(3)))
value = > utils.decodeRlp(bytesToHex(decodeNode(toBytes("0xf7a0328a4924e9ba234119f26396d33bbebdcb65d7af957d59f814558268b1c8e69a9594ae85bbb6c1c1807a64a88f1a1f978740c8a0dba0")).value()))
'0xae85bbb6c1c1807a64a88f1a1f978740c8a0dba0'
147, 126, 201, 58, 105, 171, 204,
191, 77, 115, 72, 69, 126, 178,
229, 94, 213, 155, 86, 139, 194,
18, 174, 177, 37, 171, 243, 174,
229, 156, 200, 151
],
Uint8Array(0) [],
Uint8Array(0) [],
Uint8Array(0) [],
12 Uint8Array(32) [ 0xaa4ecc3c019aa37691f5cb2cf11822f456ce443b292d228219f1fb29502d104f => v="0xe5a03112f27f422905a81edb239837dddce63ac33c22d7066f8b0d9d4e00afc6650d83820960"
key = 0xc112f27f422905a81edb239837dddce63ac33c22d7066f8b0d9d4e00afc6650d bytesToHex(nibblestoBytes([12].concat(decodeNode(toBytes(v)).key())))
value = 0x0960=2400 utils.decodeRlp(bytesToHex(decodeNode(toBytes(v)).value()))
170, 78, 204, 60, 1, 154, 163, 118,
145, 245, 203, 44, 241, 24, 34, 244,
86, 206, 68, 59, 41, 45, 34, 130,
25, 241, 251, 41, 80, 45, 16, 79
],
Uint8Array(0) [],
Uint8Array(0) [],
Uint8Array(0) []
],
_value: Uint8Array(0) []
}
最終,我們獲得了所有 4 個缺失的槽,涉及兩個地址:0xae85bbb6c1c1807a64a88f1a1f978740c8a0dba0 0x3fcbacd76037534d2aaeb9a17f4e631dd64fbe31,並存儲在映射槽 3 和 +1(結構)
- sha3(toarg(0xae85bbb6c1c1807a64a88f1a1f978740c8a0dba0)+toarg(3)) = f42505e4cfab5287d35a1886da3b550274dafd60099332aaa2a1f2edb64366e0 => 828a4924e9ba234119f26396d33bbebdcb65d7af957d59f814558268b1c8e69a
- sha3(toarg(0xae85bbb6c1c1807a64a88f1a1f978740c8a0dba0)+toarg(3))+1 = f42505e4cfab5287d35a1886da3b550274dafd60099332aaa2a1f2edb64366e1 => c112f27f422905a81edb239837dddce63ac33c22d7066f8b0d9d4e00afc6650d
- sha3(toarg(0x3fcbacd76037534d2aaeb9a17f4e631dd64fbe31)+toarg(3)) = 6499618908e6c3bd1552bf01e251de0ec9ec985e74571d0b89e1b71c4e49dc7c => 30efa3127a31b746c4ade29f2dc3d63d735226f92c8b5c62f93844e730e53875
- sha3(toarg(0x3fcbacd76037534d2aaeb9a17f4e631dd64fbe31)+toarg(3))+1 = 6499618908e6c3bd1552bf01e251de0ec9ec985e74571d0b89e1b71c4e49dc7d => 4d2849548fa0011234fd0669e617f5df1374a0d525b71bedec3d14dd02bf7f9b